skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Robin, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Isoprene emissions are a key component in biosphere–atmosphere interactions, and the most significant global source is the Amazonrainforest. However, intra- and interannual variations in biological and environmental factors that regulate isoprene emission from Amazonia arenot well understood and, thereby, are poorly represented in models. Here, with datasets covering several years of measurements at the Amazon Tall TowerObservatory (ATTO) in central Amazonia, Brazil, we (1) quantified canopy profiles of isoprene mixing ratios across seasons of normal and anomalousyears and related them to the main drivers of isoprene emission – solar radiation, temperature, and leaf phenology; (2) evaluated the effect ofleaf age on the magnitude of the isoprene emission factor (Es) from different tree species and scaled up to canopy with intra- andinterannual leaf age distribution derived by a phenocam; and (3) adapted the leaf age algorithm from the Model of Emissions of Gasesand Aerosols from Nature (MEGAN) with observed changes in Esacross leaf ages. Our results showed that the variability in isoprene mixing ratios was higher between seasons (max during the dry-to-wettransition seasons) than between years, with values from the extreme 2015 El Niño year not significantly higher than in normal years. Inaddition, model runs considering in situ observations of canopy Es and the modification on the leaf age algorithm with leaf-levelobservations of Es presented considerable improvements in the simulated isoprene flux. This shows that MEGAN estimates of isopreneemission can be improved when biological processes are mechanistically incorporated into the model. 
    more » « less